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SOLVABILITY OF MULTI-POINT BOUNDARY VALUE
PROBLEMS FOR FRACTIONAL DIFFERENTIAL

EQUATIONS AT RESONANCE

Yuji Liu* and Xingyuan Liu**

Abstract. Sufficient conditions for the existence of at least one
solution of a class of multi-point boundary value problems of the
fractional differential equations at resonance are established. The
main theorem generalizes and improves those ones in [Liu, B., Solv-
ability of multi-point boundary value problems at resonance(II),
Appl. Math. Comput., 136(2003)353-377], see Remark 2.3. An
example is presented to illustrate the main results.

1. Introduction

Fractional differential equations have many applications in modeling
of physical and chemical processes [1-8]. In its turn, mathematical as-
pects of fractional differential equations and methods of their solutions
were discussed by many authors, see the text books [3,5], the papers
[1,2,4,6-8] and the references therein.

However, there are not many papers consider the boundary value
problems at resonance for nonlinear ordinary differential equations of
fractional order.
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In this paper, we discuss the multi-point boundary value problem
(MBVP or BVP for short) of the nonlinear fractional differential equa-
tion (FDE for short) with the nonlinearity depending on Dα−1

0+ u

(1.1)





Dα
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t)
)

+ e(t), t ∈ (0, 1),
limt→0 Dα−1

0+ u(t) = 0,

limt→1 Dα−1
0+ u(t) =

∑m−2
i=1 βiD

α−1
0+ u(ξi),

where Dα
0+ is the Riemann-Liouville fractional derivative of order α ∈

(1, 2), and f : (0, 1) × R × R → R is continuous, e ∈ L1(0, 1), f and
e may be singular at t = 0 and t = 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1
and βi ∈ R(i = 1, 2, · · · ,m− 2) are constants. We obtain the results on
the existence of solutions of BVP(1.1) by using the coincidence degree
theory in Banach spaces.

One sees that the corresponding homogeneous boundary value prob-
lem of BVP(1.1) is as follows:





Dα
0+u(t) = 0, t ∈ (0, 1),

limt→0 Dα−1
0+ u(t) = 0,

limt→1 Dα−1
0+ u(t) =

∑m−2
i=1 βiD

α−1
0+ u(ξi).

It has nontrivial solutions u(t) = ctα−2, c ∈ R. Hence BVP(1.1) is called
a resonant boundary value problem.

It is easy to see when α = 2 that BVP(1.1) becomes the multi-point
BVPs

(1.2)





u′′(t) = f(t, u(t), u′(t)) + e(t), t ∈ (0, 1),
u′(0) = 0,
u′(1) =

∑m−2
i=1 βiu

′(ξi),

where f : [0, 1] × R × R → R is continuous, e ∈ L1[0, 1], 0 < ξ1 < ξ2 <
· · · < ξm−2 < 1 and βi ∈ R(i = 1, 2, · · · ,m−2) are constants. BVP(1.2)
has been studied by many authors, see [9,10]. The purpose of this paper
is to generalize parts of the results obtained in [9,10].

2. Main results

To obtain the main results, we need some notations and an abstract
existence theorem by Gaines and Mawhin [11].

Let X and Y be Banach spaces, L : D(L) ⊂ X → Y be a Fredholm
operator of index zero, P : X → X, Q : Y → Y be projectors such
that

Im P = Ker L, Ker Q = Im L, X = Ker L⊕Ker P, Y = Im L⊕Im Q.
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It follows that

L|D(L)∩Ker P : D(L) ∩Ker P → Im L

is invertible, we denote the inverse of that map by Kp.
If Ω is an open bounded subset of X, D(L)∩Ω 6= ∅, the map N : X →

Y will be called L−compact on Ω if QN(Ω) is bounded and Kp(I−Q)N :
Ω → X is compact.

Lemma 2.1. [11] Let L be a Fredholm operator of index zero and
let N be L−compact on Ω. Assume that the following conditions are
satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ [D(L) \KerL) ∩ ∂Ω]× (0, 1);
(ii) Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω;
(iii) deg(∧−1QN

∣∣
KerL , Ω ∩ KerL, 0) 6= 0, where ∧−1 : Y/ImL →

KerL is an isomorphism.

Then the equation Lx = Nx has at least one solution in D(L) ∩ Ω.

We use the Banach spaces C[0, 1] with the norm

||u||∞ = max
t∈[0,1]

|u(t)|,

and L1[0, 1] with the norm

||u||1 =
∫ 1

0
|u(s)|ds.

Let

X =





u ∈ C0(0, 1) :

Dα−1
0+ x ∈ C0(0, 1)

there exist the limits
limt→0 t2−αx(t)
limt→1 t2−αx(t)
limt→0 Dα−1

0+ x(t)
limt→1 Dα−1

0+ x(t)





.

For x ∈ X, define the norm

||x|| = max

{
sup

t∈(0,1)
t2−α|x(t)|, sup

t∈(0,1)
|Dα−1

0+ x(t)|
}

.

By means of the linear functional analysis theory, we can prove that X
is a Banach space. Choose Y = L1[0, 1].
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Define L to be the linear operator from D(L)
⋂

X to Y with

D(L) =



u ∈ Cα−1[0, 1] :

Dα
0+u ∈ L1[0, 1],

limt→0 Dα−1
0+ u(t) = 0,

limt→1 Dα−1
0+ u(t) =

∑m−2
i=1 βiD

α−1
0+ u(ξi)





and
(Lu)(t) = Dα

0+u(t), u ∈ D(L).
Define N : X → Y by

(Nu)(t) = f
(
t, u(t), Dα−1

0+ u(t)
)

+ e(t), u ∈ X.

Then BVP(1.1) can be written as

Lu = Nu, u ∈ D(L).

Lemma 2.2. It holds that

(i) KerL = {ctα−2, c ∈ R};
(ii) ImL =

{
v ∈ Y,

∫ 1
0 v(s)ds =

∑m−2
i=1 βi

∫ ξi

0 v(s)ds
}

;

(iii) L is a Fredholm operator of index zero;
(iv) There exist projectors P : X → X and Q : Y → Y such that

KerL = ImP and KerQ = ImL. Furthermore, let Ω ⊂ X be an
open bounded subset with Ω ∩ D(L) 6= ∅, then N is L−compact
on Ω.

Proof. One sees that Dα
0+u(t) = 0 has solutions

u(t) = c1t
α−1 + c2t

α−2, t ∈ (0, 1)

for some ci ∈ R, i = 1, 2. We get

Dα−1
0+ u(t) = Γ(α)c1.

It follows from

lim
t→0

Dα−1
0+ u(t) = 0, lim

t→1
Dα−1

0+ u(t) =
m−2∑

i=1

βiD
α−1
0+ u(ξi)

that c1 = 0 and c2 ∈ R. Then (i) follows immediately.
We see that v ∈ ImL if and only if there exists a function u ∈ D(L)

such that 



Dα
0+u(t) = v(t), t ∈ (0, 1), 1 < α ≤ 2,

limt→0 Dα−1
0+ u(t) = 0,

limt→1 Dα−1
0+ u(t) =

∑m−2
i=1 βiD

α−1
0+ u(ξi).

Then

(2.1) u(t) = Iα
0+v(t) + c1t

α−1 + c2t
α−2, t ∈ (0, 1).
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It follows that

(2.2) Dα−1
0+ u(t) =

∫ t

0
v(s)ds + c1Γ(α).

From the boundary conditions, we get c1 = 0 and

(2.3)
∫ 1

0
v(s)ds =

m−2∑

i=1

βi

∫ ξi

0
v(s)ds.

On the other hand, suppose v ∈ Y and satisfies (2.3). Choose

u(t) = Iα
0+v(t).

One sees by computation that

Dα
0+u(t) = v(t), t ∈ (0, 1)

and

Dα−1
0+ u(t) =

∫ t

0
v(s)ds.

One has

lim
t→0

Dα−1
0+ u(t) = 0, lim

t→1
Dα−1

0+ u(t) =
m−2∑

i=1

βiD
α−1
0+ u(ξi).

Furthermore, we know that u ∈ C(0, 1) and Dα−1
0+ u ∈ C(0, 1) and there

exist the limits

lim
t→0

t2−αx(t), lim
t→1

t2−αx(t), lim
t→0

Dα−1
0+ x(t), lim

t→1
Dα−1

0+ x(t).

Hence u ∈ D(L) and Lu = v. So v ∈ ImL. Then (ii) follows.
To prove (iii) and (iv), we first claim that there exists k ∈ {0, 1, 2,

· · · ,m− 2} such that
∑m−2

i=1 βiξ
α+k
i 6= 1. In fact, suppose that

m−2∑

i=1

βiξ
α+k
i = 1 for all k ∈ {0, 1, 2, · · · ,m− 2},

we have


ξα
1 ξα

2 · · · ξα
m−2

ξα+1
1 ξα+1

2 · · · ξα+1
m−2

· · · · · ·
· · · · · ·
· · · · · ·

ξα+m−2
1 ξα+m−2

2 · · · ξα+m−2
m−2







β1

β2

·
·
·

βm−2




=




1
1
·
·
·
1




.
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It is equal to




ξα
1 ξα

2 · · · ξα
m−2 1

ξα+1
1 ξα+1

2 · · · ξα+1
m−2 1

· · · · · · ·
· · · · · · ·
· · · · · ··

ξα+m−2
1 ξα+m−2

2 · · · ξα+m−2
m−2 1







β1

β2

·
·
·

βm−2

−1




=




0
0
·
·
·
0
0




.

However, it is well known that the Vandermont Determinant
∣∣∣∣∣∣∣∣∣∣∣∣

ξα
1 ξα

2 · · · ξα
m−2 1

ξα+1
1 ξα+1

2 · · · ξα+1
m−2 1

· · · · · · ·
· · · · · · ·
· · · · · ··

ξα+m−2
1 ξα+m−2

2 · · · ξα+m−2
m−2 1

∣∣∣∣∣∣∣∣∣∣∣∣
is not equal to zero, so there is a contradiction.

Let k satisfy
∑m−2

i=1 βiξ
α+k
i 6= 1. Define the projectors Q : Y → Y

and P : X → X by

(Qv)(t) = (α + k)

∫ 1
0 v(s)ds−∑m−2

i=1 βi

∫ ξi

0 v(s)ds

1−∑m−2
i=1 βiξ

α+k
i

tα+k−1 for v ∈ Y,

and

(Pu)(t) =
limt→0 t2−αu(t)

Γ(α− 1)
tα−2 for u ∈ X,

respectively. It is easy to prove that Im P = Ker L, Ker Q = Im L.
Furthermore, for u ∈ X, one sees

limt→0 t2−αu(t)
Γ(α− 1)

tα−2 ∈ KerL,

and the definition of P implies

P

(
u(t)− limt→0 t2−αu(t)

Γ(α− 1)
tα−2

)

= Pu(t)− P

(
limt→0 t2−αu(t)

Γ(α− 1)
tα−2

)

=
limt→0 t2−αu(t)

Γ(α− 1)
tα−2 − limt→0 t2−αu(t)

Γ(α− 1)
P

(
tα−2

)
= 0.
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We get

u(t)− limt→0 t2−αu(t)
Γ(α− 1)

tα−2 ∈ KerP.

One can see that KerL
⋂

KerP = {0}. Then X = Ker L⊕Ker P .
For v ∈ Y , since

∫ 1

0

(
v − (α + k)

∫ 1
0 v(s)ds−∑m−2

i=1 βi

∫ ξi

0 v(s)ds

1−∑m−2
i=1 βiξ

α+k
i

tα+k−1

)
dt

=
∫ 1

0
v(s)ds− (α + k)

∫ 1
0 v(s)ds−∑m−2

i=1 βi

∫ ξi

0 v(s)ds

1−∑m−2
i=1 βiξ

α+k
i

∫ 1

0
tα+k−1dt

=
∫ 1

0
v(s)ds−

∫ 1
0 v(s)ds−∑m−2

i=1 βi

∫ ξi

0 v(s)ds

1−∑m−2
i=1 βiξ

α+k
i

,

implies
m−2∑

i=1

βi

∫ ξi

0

(
v − (α + k)

∫ 1
0 v(s)ds−∑m−2

i=1 βi

∫ ξi

0 v(s)ds

1−∑m−2
i=1 βiξ

α+k
i

tα+k−1

)
dt

=
m−2∑

i=1

βi

∫ ξi

0
v(t)dt

−
∫ 1
0 v(s)ds−∑m−2

i=1 βi

∫ ξi

0 v(s)ds

1−∑m−2
i=1 βiξ

α+k
i

m−2∑

i=1

βi(α + k)
∫ ξi

0
tα+k−1dt

=
m−2∑

i=1

βi

∫ ξi

0
v(t)dt−

∫ 1
0 v(s)ds−∑m−2

i=1 βi

∫ ξi

0 v(s)ds

1−∑m−2
i=1 βiξ

α+k
i

m−2∑

i=1

βiξ
α+k
i

=
∫ 1

0
v(s)ds−

∫ 1
0 v(s)ds−∑m−2

i=1 βi

∫ ξi

0 v(s)ds

1−∑m−2
i=1 βiξ

α+k
i

=
∫ 1

0

(
v − (α + k)

∫ 1
0 v(s)ds−∑m−2

i=1 βi

∫ ξi

0 v(s)ds

1−∑m−2
i=1 βiξ

α+k
i

tα+k−1

)
dt,

we get

v − (α + k)

∫ 1
0 v(s)ds−∑m−2

i=1 βi

∫ ξi

0 v(s)ds

1−∑m−2
i=1 βiξ

α+k
i

tα+k−1 ∈ ImL.

Together with

(α + k)

∫ 1
0 v(s)ds−∑m−2

i=1 βi

∫ ξi

0 v(s)ds

1−∑m−2
i=1 βiξ

α+k
i

tα+k−1 ∈ ImQ,
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and ImL
⋂

ImQ = {0}, so Y = Im L ⊕ Im Q. It follows that Y/ImL =
ImQ. So dim KerL = dim Y/ImL = 1. Hence L is a Fredholm operator
of index zero.

For v ∈ ImL, let

(KP v)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1v(s)ds = Iα

0+v(t) for v ∈ ImL.

One sees KP v ∈ D(L) and

P

(
1

Γ(α)

∫ t

0
(t− s)α−1v(s)ds

)

= P (Iα
0+v(t)) =

limt→0 t2−αIα
0+v(t)

Γ(α− 1)
tα−2 = 0.

It follows that (Kpv) ∈ KerP . Then KP : Im L → D(L) ∩ KerP is
well defined.

Furthermore, for v ∈ ImL, we have

(LKP )(v) = L

(
1

Γ(α)

∫ t

0
(t− s)α−1v(s)ds

)
= Dα

0+ (Iα
0+v(t)) = v(t).

On the other hand, for u ∈ Ker P ∩D(L), we have

(Pu)(t) =
limt→0 t2−αu(t)

Γ(α− 1)
tα−2 = 0, t ∈ (0, 1).

Then limt→0 t2−αu(t) = 0. Suppose Dα
0+u = v. Then

u(t) = Iα
0+v(t) + c1t

α−1 + c2t
α−2.

Since Dα−1
0+ u(t) = 0 and limt→0 t2−αu(t) = 0, then c1 = c2 = 0. It

follows from the definition of KP that

(KP L)u(t) = KP Dα
0+u(t) = KP v(t)

=
1

Γ(α)

∫ t

0
(t− s)α−1v(s)ds

= u(t).

Then KP is the inverse of L : D(L)
⋂

KerP → ImL. The isomorphism
∧ : KerL → Y/ImL is given by

∧(atα−2) = atα+k−1.
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Furthermore, one has

QNu(t)

= Q
(
f(t, u(t), Dα−1

0+ u(t)) + e(t)
)

=
(α + k)tα+k−1

1−∑m−2
i=1 βiξ

α+k
i

∫ 1

0

(
f(t, u(t), Dα−1

0+ u(t)) + e(t)
)
dt

− (α + k)tα+k−1

1−∑m−2
i=1 βiξ

α+k
i

m−2∑

i=1

βi

∫ ξi

0

(
f(t, u(t), Dα−1

0+ u(t)) + e(t)
)
dt,

Kp(I −Q)Nx(t)

= Kp(I −Q)
(
f(t, u(t), Dα−1

0+ u(t)) + e(t)
)

= KP

(
f(t, u(t), Dα−1

0+ u(t)) + e(t)
)

−KP Q
(
f(t, u(t), Dα−1

0+ u(t)) + e(t)
)

=
1

Γ(α)

∫ t

0
(t− s)α−1

(
f(s, u(s), Dα−1

0+ u(s)) + e(s)
)
ds

− 1
Γ(α)

α + k

1−∑m−2
i=1 βiξ

α+k
i

∫ 1

0

(
f(t, u(t), Dα−1

0+ u(t)) + e(t)
)
dt×

∫ t

0
(t− s)α−1sα+k−1ds.

Since f is continuous, Let Ω be a bounded subset in Y . It is easy
to show that QN(Ω) and KP (I − Q)N(Ω) are bounded in Y , KP (I −
Q)N(Ω) and Dα−1

0+ KP (I − Q)N(Ω) are equicontinuous. Then KP (I −
Q)N is completely continuous. So N is L−compact on Ω. The proofs
are completed.

Theorem 2.3. Suppose
(A) there exist nonnegative continuous functions a, b, c, r ∈ L1(0, 1),

and a constant θ ∈ [0, 1) such that for alll (x, y) ∈ R2, t ∈ (0, 1) either

(2.4) |f(t, tα−2x, y)| ≤ a(t)|x|+ b(t)|y|+ c(t)|y|θ + r(t)

or else

(2.5) |f(t, tα−2x, y)| ≤ a(t)|x|+ b(t)|y|+ c(t)|x|θ + r(t).

(B) there exists a constant M > 0 such that |x| > M implies

∫ 1

0
(f(s, sα−2x, y) + e(s))ds 6=

m−2∑

i=1

βi

∫ ξi

0
(f(s, sα−2x, y) + e(s))ds.
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(C) there exists a constant M∗ > 0, then either

c

[∫ 1

0
[f(t, ctα−2, 0) + e(t)]dt

−
m−2∑

i=1

βi

∫ ξi

0
[f(t, ctα−2, 0) + e(t)]dt

]
> 0

(2.6)

for all |c| > M∗ or else

c

[∫ 1

0
[f(t, ctα−2, 0) + e(t)]dt

−
m−2∑

i=1

βi

∫ ξi

0
[f(t, ctα−2, 0) + e(t)]dt

]
< 0

(2.7)

for all |c| > M∗.
(D) 2

Γ(α)

∫ 1
0 sα−2a(s)ds +

∫ 1
0 b(s)ds < 1.

Then for every e ∈ L1[0, 1] BVP(1) has at least one solution.

Proof. From Lemma 2.2, L be a Fredholm operator of index zero and
let N be L−compact on Ω.

To apply Lemma 2.1, we should define an open bounded subset Ω of
X centered at zero such that (i), (ii) and (iii) in Lemma 2.1 hold. To
obtain Ω, we do three steps. The proof of this theorem is divided into
four steps.

Step 1. Let Ω1 = {u ∈ D(L)\KerL, Lu = λNu for some λ ∈ (0, 1)}.
We prove that Ω1 is bounded.

For u ∈ Ω1, we get Lu = λNu and





Dα
0+u(t) = λf

(
t, u(t), Dα−1

0+ u(t)
)

+ e(t), t ∈ (0, 1), 1 < α ≤ 2,

limt→0 Dα−1
0+ u(t) = 0,

limt→1 Dα−1
0+ u(t) =

∑m−2
i=1 βiD

α−1
0+ u(ξi).

Now, Nu ∈ ImL implies that

∫ 1
0 (f(s, u(s), Dα−1

0+ u(s)) + e(s))ds 6=
∑m−2

i=1 βi

∫ ξi

0 (f(s, u(s), Dα−1
0+ u(s)) + e(s))ds.
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It follows that

∫ 1
0

[
f

(
s, s2−αu(s)

s2−α , Dα−1
0+ u(s)

)
+ e(s)

]
ds

6=
∑m−2

i=1 βi

∫ ξi

0

[
f

(
s, s2−αu(s)

s2−α , Dα−1
0+ u(s)

)
+ e(s)

]
ds.

(¦)

Since t2−αu(t) is continuous on (0, 1), then either there exists t0 ∈ (0, 1)
such that t2−α

0 |u(t0)| ≤ M or

t2−αu(t) > M for all t ∈ (0, 1] (∗)

or

t2−αu(t) < M for all t ∈ (0, 1). (?)

If (∗) and (?) hold, together with (¦) and (B), there exists t0 ∈ [0, 1]
such that t2−α

0 |u(t0)| ≤ −M . Hence we have t0 ∈ (0, 1) such that

t2−α
0 |u(t0)| ≤ M. (•)

One sees that

u(t) = Iα
0+Dα

0+u(t) + c1t
α−1 + c2t

α−2

= λIα
0+

[
f

(
t, u(t), Dα−1

0+ u(t)
)

+ e(t)
]
+ c1t

α−1 + c2t
α−2.

Since

lim
t→0

Dα−1
0+ u(t) = 0,

then c1 = 0. On the other hand, we have

t2−αu(t) = Iα
0+Dα

0+u(t) + c2, t2−α
0 u(t0) = Iα

0+Dα
0+u(t)|t=t0

+ c2.

Then

|t2−αu(t)| =
∣∣∣t2−α

0 |u(t0)|+ t2−αIα
0+Dα

0+u(t)− t2−αIα
0+Dα

0+u(t)
∣∣
t=t0

∣∣∣

≤ M +
∣∣∣t2−α

∫ t
0

(t−s)α−1

Γ(α) Dα
0+u(s)ds− t2−α

0

∫ t0
0

(t0−s)α−1

Γ(α) Dα
0+u(s)ds

∣∣∣
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= M +
∣∣∣t2−α

∫ t
0

(t−s)α−1

Γ(α) dDα−1
0+ u(s)− t2−α

0

∫ t0
0

(t0−s)α−1

Γ(α) dDα−1
0+ u(s)

∣∣∣

= M +
∣∣∣∣ t2−α (t−s)α−1

Γ(α) Dα−1
0+ u(s)

∣∣∣
t

0
− t2−α

0
(t0−s)α−1

Γ(α) Dα−1
0+ u(s)

∣∣∣
t0

0

t2−α
∫ t
0

(t−s)α−2

Γ(α−1) Dα−1
0+ u(s)ds− t2−α

0

∫ t0
0

(t0−s)α−2

Γ(α) Dα−1
0+ u(s)ds

∣∣∣

≤ M + t2−α
∫ t
0

(t−s)α−2

Γ(α−1) |Dα−1
0+ u(s)|ds + t2−α

0

∫ t0
0

(t0−s)α−2

Γ(α) |Dα−1
0+ u(s)|ds

≤ M +
(
t2−α

∫ t
0

(t−s)α−2

Γ(α−1) ds + t2−α
0

∫ t0
0

(t0−s)α−2

Γ(α−1) ds
)

supt∈(0,1) |Dα−1
0+ u(t)|

≤ M + 2
Γ(α) supt∈(0,1) |Dα−1

0+ u(t)|.
If (2.4) holds, then

|Dα−1
0+ u(t)| =

∣∣∣Dα−1
0+ u(t)|t=0 +

∫ t
0 Dα

0+u(s)ds
∣∣∣

=
∣∣∣λ

∫ t
0

[
f(s, u(s), Dα−1

0+ u(s)) + e(s)
]
ds

∣∣∣

≤ ∫ 1
0

∣∣ f(s, u(s), Dα−1
0+ u(s)) + e(s)

∣∣ ds

≤ ∫ 1
0 |f(s, sα−2s2−αu(s), Dα−1

0+ u(s))|ds +
∫ 1
0 |e(s)|ds

≤ ∫ 1
0 sα−2a(s)|s2−αu(s)|ds +

∫ 1
0 b(s)|Dα−1

0+ u(s))|ds

+
∫ 1
0 c(s)|Dα−1

0+ u(s))|θds +
∫ 1
0 |r(s)|ds +

∫ 1
0 |e(s)|ds

≤ ∫ 1
0 sα−2a(s)ds supt∈(0,1) |t2−αu(t)|+ ∫ 1

0 b(s)ds supt∈(0,1) |Dα−1
0+ u(t))|

+
∫ 1
0 c(s)ds

(
supt∈(0,1) |Dα−1

0+ u(t))|
)θ

+
∫ 1
0 |r(s)|ds +

∫ 1
0 |e(s)|ds

≤ ∫ 1
0 sα−2a(s)ds

(
M + 2

Γ(α) supt∈(0,1) |Dα−1
0+

)

+
∫ 1
0 b(s)ds supt∈(0,1) |Dα−1

0+ u(t))|

+
∫ 1
0 c(s)ds

(
supt∈(0,1) |Dα−1

0+ u(t))|
)θ

+
∫ 1
0 |r(s)|ds +

∫ 1
0 |e(s)|ds
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=
(

2
Γ(α)

∫ 1
0 sα−2a(s)ds +

∫ 1
0 b(s)ds

)
supt∈(0,1) |Dα−1

0+ u(t))|

+
∫ 1
0 c(s)ds

(
supt∈(0,1) |Dα−1

0+ u(t))|
)θ

+M
∫ 1
0 sα−2a(s)ds +

∫ 1
0 |r(s)|ds +

∫ 1
0 |e(s)|ds.

Then

sup
t∈(0,1)

|Dα−1
0+ u(t))|

≤
(

2
Γ(α)

∫ 1

0
sα−2a(s)ds +

∫ 1

0
b(s)ds

)
sup

t∈(0,1)
|Dα−1

0+ u(t))|

+
∫ 1

0
c(s)ds

(
sup

t∈(0,1)
|Dα−1

0+ u(t))|
)θ

+M

∫ 1

0
sα−2a(s)ds +

∫ 1

0
|r(s)|ds +

∫ 1

0
|e(s)|ds.

It follows from (D) and θ ∈ [0, 1) that there exists a constant M1 > 0
such that

(2.8) sup
t∈(0,1)

|Dα−1
0+ u(t))| ≤ M1.

Then

sup
t∈(0,1)

t2−α|u(t)| ≤ M +
2

Γ(α)
M1.

Hence

(2.9) ||u||| ≤ max
{

M1, M +
2

Γ(α)
M1

}
=: M2.

It follows that Ω1 is bounded.
If (2.5) holds, similarly to above discussion, we can that there exists

M2 > 0 such that (2.9) holds. It follows that Ω1 is bounded too.

Step 2. Let Ω2 = {x ∈ KerL : Nx ∈ ImL}. We prove that Ω2 is
bounded.

For x ∈ Ω2, then x(t) = ctα−2, and

Nx(t) = f(t, ctα−2, 0) + e(t).
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So

(2.10)
∫ 1

0
[f(t, ctα−2, 0) + e(t)]dt =

m−2∑

i=1

βi

∫ ξi

0
[f(t, ctα−2, 0) + e(t)]dt.

From (B), we get that |ctα−2| ≤ M . Then |c| ≤ M . This shows Ω2 is
bounded.

Step 3. We prove that either

Ω3 = {x ∈ Ker L : λ ∧ x + (1− λ)QNx = 0, λ ∈ [0, 1]}
or

Ω3 = {x ∈ Ker L : −λ ∧ x + (1− λ)QNx = 0, λ ∈ [0, 1]}
is bounded.

If (2.6) holds for all |c| > M∗, let

Ω3 = {x ∈ Ker L : λ ∧ x + (1− λ)QNx = 0, λ ∈ [0, 1]},
where ∧ is the isomorphism given by ∧(ctα+k−1) = ctα−2. We prove that
Ω3 is bounded.

For x(t) = ctα−2 ∈ Ker L, one sees that

−λctα+k−1 =
(1− λ)(α + k)tα+k−1

1−∑m−2
i=1 βiξ

α+k
i

(∫ 1

0
[f(t, ctα−2, 0) + e(t)]dt

−
m−2∑

i=1

βi

∫ ξi

0
[f(t, ctα−2, 0) + e(t)]dt

)
.

Then

−λc =
(1− λ)(α + k)

1−∑m−2
i=1 βiξ

α+k
i

(∫ 1

0
[f(t, ctα−2, 0) + e(t)]dt

−
m−2∑

i=1

βi

∫ ξi

0
[f(t, ctα−2, 0) + e(t)]dt

)
.

If λ = 1, then c = 0. If λ ∈ [0, 1), and |c| > M∗, we get

0 ≥ −λc2 =
(1− λ)(α + k)

1−∑m−2
i=1 βiξ

α+k
i

(
a

∫ 1

0
[f(t, ctα−2, 0) + e(t)]dt

−c
m−2∑

i=1

βi

∫ ξi

0
[f(t, ctα−2, 0) + e(t)]dt

)

> 0,

a contradiction. Hence |c| ≤ M∗. Then Ω3 is bounded.
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If (2.7) holds for all |c| > M∗, let

Ω3 = {x ∈ Ker L : λ ∧ x− (1− λ)QNx = 0, λ ∈ [0, 1]},
where ∧ is the isomorphism given by ∧(ctα+k−1) = ctα−2. We prove that
Ω3 is bounded.

Step 4. We shall show that all conditions of Lemma 2.3 are satisfied.
Set Ω be a open bounded subset of X centered at zero such that

Ω ⊃ ∪3
i=1Ωi. By Lemma 2.2, L is a Fredholm operator of index zero and

N is L−compact on Ω. By the definition of Ω, we have

(i) Lx 6= λNx for x ∈ (D(L) \KerL) ∩ ∂Ω and λ ∈ (0, 1);
(ii) Nx /∈ ImL for x ∈ KerL ∩ ∂Ω.
(iii) deg(QN |KerL, Ω ∩ KerL, 0) 6= 0. In fact, let H(x, λ) = ±λ ∧ x +

(1− λ)QNx. According the definition of Ω, we know H(x, λ) 6= 0
for x ∈ ∂Ω ∩KerL, thus by homotopy property of degree,

deg(QN |KerL, Ω ∩KerL, 0) = deg(H(·, 0),Ω ∩KerL, 0)
= deg(H(·, 1),Ω ∩KerL, 0)
= deg(∧, Ω ∩KerL, 0) 6= 0.

Thus by Lemma 2.1, Lx = Nx has at least one solution in D(L) ∩ Ω,
which is a solution of BVP(1.1). The proof is complete.

Remark 2.4. Theorem 2.3 generalizes and improves the main result
(Theorem 3.8) in [10]. In fact, when α = 2, BVP(1.1) becomes





u′′(t) = f(t, u(t), u′(t)) + e(t), t ∈ (0, 1),
u′(0) = 0,
u′(1) =

∑m−2
i=1 βiu

′(ξi).

(i) Firstly the assumptions
∑m

i=1 βi = 1 and
∑m

i=1 βiξi 6= 1 in [10:
Theorem 3.8] are cancelled in Theorem 2.3.

(ii) Secondly, the assumption (D) is

2
∫ 1

0
a(s)ds +

∫ 1

0
b(s)ds < 1 when α = 2.

It is weaker than
∫ 1

0
a(s)ds +

∫ 1

0
b(s) <

1
2

supposed in [10 : Theorem 3.8].

(iii) the other assumptions in Theorem 2.3 are exactly same to those
ones of Theorem 3.8 in [10].
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Remark 2.5. Similarly to Theorem 2.3, for the following BVP
(2.11)




Dα
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t)
)

+ e(t), t ∈ (0, 1), 1 < α ≤ 2,

limt→0 Dα−1
0+ u(t) =

∑m−2
i=1 βiD

α−1
0+ u(ξi),

limt→1 Dα−1
0+ u(t) = 0,

we can establish existence result for solutions. The details are omitted.

3. An example

Now, we present an example, which can not be covered by known
results, to illustrate Theorem 2.3.

Example 3.1. Consider the boundary value problem

(3.1)





D
3
2

0+(t) = 1
24x(t) + 1

24 sin
(

D
1
2

0+x(t)
)

+3 sin
(

D
1
2

0+x(t)
) 1

3

+ 1 + cos2 t,

limt→0 D
1
2

0+u(t) = 0,

limt→1 D
1
2

0+u(t) = 1
2D

1
2

0+x
(

1
4

)
+ 1

2D
1
2

0+x
(

1
2

)
.

Corresponding to BVP(1.1), α = 3
2 and

ξ1 =
1
4
, ξ2 =

1
2
, β1 =

1
2
, β2 =

1
2
,

f(t, x, y) =
1
24

x +
1
24

sin y + 3 sin y
1
3 , e(t) = 1 + cos2 t.

(A) choose a(t) = 1
24 , b(t) = 1

24 , c(t) = 3, r(t) = 0, θ = 1
3 , then for

all (x, y) ∈ R2, t ∈ (0, 1) either

(3.2) |f(t, x, y)| ≤ a(t)|x|+ b(t)|y|+ c(t)|y|θ + r(t).

(B) choose M = 122, it is easy to find that

f(t, x, y) + e(t) ≥ 1
24

x− 1
24
− 3 + 1 =

x− 49
24

>
1
24

if x > M,
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then

∫ 1
0 (f(s, u(s), Dα−1

0+ u(s)) + e(s))ds− 1
2

∫ 1
4

0 (f(s, u(s), Dα−1
0+ u(s)) + e(s))ds

−1
2

∫ 1
2

0 (f(s, u(s), Dα−1
0+ u(s)) + e(s))ds

= 1
2

∫ 1
1
4
(f(s, u(s), Dα−1

0+ u(s)) + e(s))ds

+1
2

∫ 1
1
2
(f(s, u(s), Dα−1

0+ u(s)) + e(s))ds

> 0.

It is easy to find that

f(t, x, y) + e(t) ≤ 1
24

x +
1
24

+ 3 + 2 =
x + 120

24
<
−2
24

if x < −M,

then

∫ 1
0 (f(s, u(s), Dα−1

0+ u(s)) + e(s))ds− 1
2

∫ 1
4

0 (f(s, u(s), Dα−1
0+ u(s)) + e(s))ds

−1
2

∫ 1
2

0 (f(s, u(s), Dα−1
0+ u(s)) + e(s))ds

= 1
2

∫ 1
1
4
(f(s, u(s), Dα−1

0+ u(s)) + e(s))ds

+1
2

∫ 1
1
2
(f(s, u(s), Dα−1

0+ u(s)) + e(s))ds

< 0.

Then u ∈ D(L), if |u(t)| > M for all t ∈ [0, 1], it holds that

∫ 1
0 (f(s, u(s), Dα−1

0+ u(s)) + e(s))ds 6=
∑m−2

i=1 βi

∫ ξi

0 (f(s, u(s), Dα−1
0+ u(s)) + e(s))ds.

(C) since

f(t, ctα−2, 0) + e(t) =
1
24

ctα−2 + 1 + cos2 t,
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we get

A = c

[∫ 1
0 [f(t, ctα−2, 0) + e(t)]dt− 1

2

∫ 1
4

0 [f(t, ctα−2, 0) + e(t)]dt

− 1
2

∫ 1
2

0 [f(t, ctα−2, 0) + e(t)]dt

]

= c
[

1
2

∫ 1
1
4
[f(t, ctα−2, 0) + e(t)]dt + 1

2

∫ 1
1
2
[f(t, ctα−2, 0) + e(t)]dt

]

= c
[

1
2

∫ 1
1
4

(
1
24ctα−2 + 1 + cos2 t

)
dt + 1

2

∫ 1
1
2

(
1
24ctα−2 + 1 + cos2 t

)
]dt

]

= 1
48

(
2− 1

4α−1 − 1
2α−1

)
c2 + 1

2

∫ 1
1
4

(
1 + cos2 t

)
dt + 1

2

∫ 1
1
2

(
1 + cos2 t

)
dtc.

It is easy to see that there exists M∗ > 0 such that A > 0 for all |c| > M∗

(D) 2
Γ(α)

∫ 1
0

a(s)
s2−α ds + ||b||1 < 1.

It follows from Theorem 2.3 that BVP(3.1) has at least one solution
x.
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